The guide on the following page(s) was provided by the supplier. New Pig Corporation assumes no responsibility, obligation, or liability in conjunction with the use or misuse of the information.

newpig.com North America: 1-800-468-4647 Europe: +31 (0)76 596 92 50 China: +86-21-400 921 5178

UK: **0800 919 900** Outside North America: **+1-814-684-0101**

PIG, PIG logo are registered trademarks in USA and other countries. See tm.newpig.com

COATINGS & POLYMERS EXPLAINED

Naturally occurring and man-made polymers are essential building blocks of hand protection. Specific polymers protect workers from specific hazards. That's why SHOWA utilizes a variety of polymers and coatings, delivering **hand protection for every pursuit**.

	STRENGTHS	WEAKNESSES
Nitrile Anti-slip vulcanized synthetic rubber	 No latex proteins Excellent abrasion and cut resistance Three times the puncture resistance of latex Excellent resistance to oil, grease and hydrocarbons Resistance to acids, certain organic solvents, pesticides, oils and fuels Heat resistance (no flame resistance) 	 Relatively rigid Normally low tear resistance (N-DEX* gloves are an exception) No chemical resistance against ketones and some chlorinated hydrocarbons (methylene chloride and trichloroethylene).
Natural Rubber Natural rubber mainly from latex and the rubber tree	 Very flexible and elastic Very robust, provides secure grip Excellent abrasion resistance to tearing and bending Waterproof Protects against weak acids, caustics, alcohols and detergents 	 Poor chemical resistance against oils, greases, hydrocarbons and organic solvents Proteins may cause allergic reaction
PVC (<i>poly vinyl chloride</i>) Economical synthetic thermoplastic	 Functional in temperatures ranging from -30°F (-34°C) to 212°F (100°C) Durable, provides high chemical resistance Material softened by plasticizer Good electrical insulator 	 Low resistance to cuts and punctures Disposable PVC gloves might have pinholes Low resistance to solvents
Polyurethane (PU) Plastic that is micro-porous elastomer	 Very flexible and elastic No latex proteins Clean - does not shed particles Good resistance to abrasion and oils Does not harden in cold or soften in heat Porous ventilation reduces perspiration 	 Low chemical resistance Poor resistance to hot water
Neoprene Polychloroprene synthetic rubber	 Flexible in temperatures ranging from -10°F (-23°C) to 300°F (150°C) Soft like natural rubber, but contains no natural rubber latex proteins Good abrasion and cut resistance Chemical protection against acids, alcohols, fats, ketones, organic and inorganic solvents, oils, greases and petrochemicals Heat resistant and flame resistant Resists degradation from ozone, sunlight and oxidation 	 Poor grip when wet No chemical resistance against chlorinated hydrocarbon solvents
Butyl Synthetic rubber polymer for heavy chemical protection	 Very elastic, even at low temperatures Excellent chemical resistance against gases, ketones (MEK, acetone) and acids Low gas permeability 	 Limited grip and dexterity Poor mechanical resistance Poor resistance to alphatic hydrocarbons, aromatic hydrocarbons and halogenated solvents
Viton Synthetic rubber polymer - the last resort	 Protects where nothing else protects Chemical protection against PCBs Excellent chemical protection against chlorinated, aliphatic and aromatic hydrocarbons 	 Limited grip Limited dexterity Not suitable for ketones, esters and nitro compounds

POLYMER COMBINATIONS: THE BEST OF BOTH WORLDS

Certain combinations of polymers are used to make hybrid gloves. Neoprene over natural rubber latex is used in SHOWA* CHM and CHMY gloves. Viton over Butyl is used to make the highly chemical resistant SHOWA 890 and 892 gloves. Nitrile is used as an over-dip in several SHOWA natural rubber gloves to provide added resistance to aging, ozone and chemicals.